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ABSTRACT

Dynamics of Tethers in a linearized analysis can be

considered as the superposition of propagating waves.

This approach permits to have a new way for the analysis

of a Tether behaviour during deployment and retrival,

were a Tether can be considered composed by a part at

rest and a part sujected to propagation fenomena, being

the separating section depending on time.

The dependence on time of the separating section

requires the analysis of the reflection of the waves

travelling toward the part at rest. Such a reflection

generates a reflected wave, whose characteristics are

determined.

The propagation fenomena of major intest in a Tether are

transverse waves and longitudinal waves, all

mathematically modelled by the "vibrating chord"

equations, if the tension is considered constant along

the Tether itself. An interesting problem also

considered is concerned with the dependence of the

Tether tension from the longitudinal position, due to

microgravity, and the influence of this dependence on

propagation waves.
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INTRODUCTION

Dynamics of Tethers('), as well as of any structure, in a linearized

analysis can be considered as the superposition of propagating waves.

This requires the study of dynamic propagation along the Tether with

the appropriate boundary conditions. During deployment and retrieval,

with reference to a lagrangian reference system("), Tether can be

considered as composed of two parts - one at the rest and one subjected

to the propagation phenomena. These two parts are separated by a

section that changes with time, i.e. the Tether section that bounds the

part constrained to rest is changing with time (the other part being

free to move and vibrate and having the opposite end section subjected

to the boundary conditions imposed by the satellite).

The propagation phenomena of major interest from a practical point of

view are the following.

i) Transverse waves, mainly a "vibrating chord" behaviour, where

inertial forces and the tension in the Tether - in combination with

its local curvature - are the most important elements of the

dynamic equilibrium.

2) Longitudinal waves, mathematically modelled by the "vibrating chord"

equation, where inertial forces and longitudinal internal forces,

due to elastic deformations, are the most important elements of the

dynamic equilibrium.

The dependence on time of the section which bounds the part at rest

requires the analysis of the reflection of the wave travelling toward

the part at rest. Such a reflection generates a wave travelling

outward, whose characteristics are to be determined.

The A. had previously considered from a theoretical point of view such

problem in particular in order to analyze the behaviour of deployable

booms subjected to longitudinal and flexural dynamic phenomena (see

(i), (2), (3) and (4)). Also in the case of the problems concerning a

structure like the Tether, the theoretical analysis gives rigorous

solutions and permit an insight into experimentally observed effects,

(') It can be suggested Ref. (8) for a general presentation of Tether

concept and its (dynamic) problems.

(") A reference system which introduces a bi-univocal correspondence

between a longitudinal coordinate and each Tether section.
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that by some authors were erroneously thought to be "continuous"

changes of frequencies and amplitudes of the proper modes.

This paper belongs to a series of works having the scope of opening a

new way in the approach by means of mathematical models of several

mechanical problems of deployable systems of telescopic and Tether

type.

Recently several attempts have been made to solve the problem of the

telescopic structures behaviour. Such attempts are mainly based in

changes of the coordinates in order to take into account the changes

during the time of the space where the problem is defined.

As a matter of fact these attempts don't seem obtain good results. They

don't take into account energetic balances.

On the contrary this work introduces and developes to some extent the

basic idea of considering each dynamic motion in a structure as the

results of wave propagation , taking also into account energetic

exchanges at the ends.

In the case of vibrating chord the problem of the time dependence of

the definition space can't be resolved by means of the Cauchy, Goursat

and Darboux results, (5). These results deal with the problems of time

dependinE location of the sections where are imposed the boundary

conditions. In the part that is external to such sections dynamic

phenomena take place that are coherent with phenomena acting in the

internal part and contribute to supply or spillover energy in it.

This work deals with the request of having external parts at the rest

(not only the boundary sections). Therefore boundary sections have the

behaviour of surface where internal dynamic phenomena "reflect".

Obviously reference is made to a constant section unaxial structure, as

Tether can be considered. Longitudinal tension loads due to

microgravity permits to consider additive small tension or compression

loads without critical phenomena.
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FUNDAMENTAL EQUATIONS

Let us have first a brief recall of concepts, with reference only to

the case of longitudinal waves making use of Ref. (i). The reader can

easily do the extension to transverse waves. The problem can be

analyzed by means of an equilibrium and a continuity equations.

If _:_%_) is the stress at point :_ and time _ and _ :_C_)is

the velocity of the motion, the equilibrium linearized equation is

l) = _ .

The continuity linearized equation on the other hand is

2) __ = _ _ __ o

_ E Qr

we put ¢ z _/_/If
= . ) operating we obtain

i') -- -- __

9, wz ¢,.- _)tz.

The general solutions of eq.s i') and 2') are

4) +- -
C /

Eqs. 3) and 4) indicate that the motion of the bar is composed of two

waves: one travelling in the increasing x direction and another

travelling in the decreasing x direction.

On the base of these considerations it is possible to obtain a relation

between p and u of each travelling wave.
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¢

5)

6)

and _z = _ w --_ , from 3) and 4) one obtains
C

9G- x f_._5 <';_f<"

_t 9t_ 9t_

Taking into account eq. l) from 5) and 6) we have the relation

If A=_ )_=0 , eq. 7), giyes the rela_on

On the other hand if_,=O_._6+-O , we have the relation

fc

With the initial conditions 4.d_4_]_):0

t__l_O):O %_>J--_the following relations between
travelling wave

) --.i_t_,) =0 or (separately)

u and p hold for each

: k,

) ,_/'-9) _ (_+ __ c (t+z C '

Such relations enable us to determine one of the two values_or_when

the other is known (eq. 8) and also to determine one of the values_zor

_ when the other is know (eq. 9).

They are connected respectively with the separate behaviour of the two

travelling waves.
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REFLECTIONONTHETIMEDEPENDENTSECTION

Also in this paragraphlongitudinal wavesare consideredas a sample
problem,still makinguseof Ref (i). Theextension to transversewaveis
easy. In practical applications the boundaryconditions that are usually
consideredfor uniaxial extensionalbars are free edge( _=O ) and fixed

edge (_O). At the edge where deployment is done, it is (_)=O, where

_(.a=X_t) is the time dependent section that can be considered as fixed

and_14_=% r is the velocity of displacement of the constraint. Here

_ is an abscissa on the indeformed bar.

As a first analysis of the behaviour at a time dependent fixed section we

can consider the problem of an extensional bar having a free edge at 9o=O

and constrained with _)=o _T 7_c=_+61]" _ where _, U" are

constant. The bar is subjected in _=O to an external extensional

specific force _4 indipendent of the time_.

Such force produces a wave travelling in the direction of the increasing

when such wave reaches the moving constraint section _ a

reflected wave of specific force _z is generated that runs in the

direction of the decreasing x.

We will now determine the characteristic of the reflected wave, before it

reaches the section :_O

In order to determine the reflected wave by means of an energy balance is

necessary to dispose of an evaluation of the energy exchanged at the

constrained end. A discussion on this subject is performed in ref. (I).

The conclusion is that the constraint has and energy exchange different

from zero e that the reflected wave can be determined by means of a

behavioural analysis like the following.

During the time we have the already introduced displacement of the

section where the constraint is imposed. Such displacement corresponds to

the internal deformation of the rod.

The interval _'_=_'_d_,during _, withstands a length change _l=-_x_,,_J_-

with a strain _ = _6/_.

On the otherE hand the final stress in _- ./ must be E= _+_ :

=_._) _, that means a strain 6 = _,-_,.I _/C
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Equating the two expressions of the strain gives

i0) "_Z -- - _4

This result I0) coincides with that of the application of the Goursat

Darboux and Cauchy problem solution,(5), with the condition.M=o at_=_.

In spite of the observed coincidence with the well known results of the

vibrating chord analysis, the proposed model presents the advantage of

the applicability to more complex problems as dispersive systems, (see

for instance (6) and (3)).
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EXTENSION TO TIME DEPENDENT AMPLITUDE (OF THE TRAVELLING WAVE) AND SPEED

(OF THE BO_ARY CONDITION)

Let us consider in a non dispersive system the wave v&¢ 4 travelling

inward the time variable restraint and the _4_ z. travelling outward

expanded as follows, (see also (2)),

If at a time %_ the restraint condition is

a_ at the time tt_t where 4/" will tends to zero,

without loss in generality we can put _I_-0 and introduce a dummy

variable _ such that #_ _ <t6_.

During _ at the section _4 the displacement

take place. During the same _- in the region _>0 the internal

deformation generates a change in length

The equation between such two _ } substituting 14) and taking into

account only the terms of the lower order for respect to the principal

_" , operating gives)

or

Relation 14) means that, beside the higher order terms,

like in the case of_ andi¢_ of constant value.
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EXTENSIONTOPROPAGATIONSPEEDDEPENDINGONTHELONGITUDINALPOSITION

Thepresent paragraphconcernsthe extensionof the analysis to the case
whereeq. I') and2') becomeas follows

X")-- )

- '
This case includes the dynamics of transverse waves in Tethers where

longitudinal load is depending on the position due to microgravity.

Because c_) is not constant but a function ofgK t C_ =_z)) expressions

3) and 4) are not still valid, and it is necessary to find an appropriate

way of solution.

The A. in a previous paper, (7) here largely recalled, proposed that the

general solution of eq.s I") were composed by means of two waves in

opposite directions travelling and having speed depending on x. Such

waves reduce to eq.s 3) and 4) when _(z_reduce to a constant C. If_

indicates _ or_. as necessary, the following expression was adopted (')

where _ is an arbitrary constraint and --__ _ C_XJ could be the

propagation speed at 2f.. /

Obviously, not all the functions _4and _&are usefull to satisfy_ i"). The
i

problem is now reduced to the determination of the functions _4 and _zgif

any, that can satisfy l").

The functions _4 and _& can be examined separately.

Q¢, _ i4 L, _ )

('-_When _C)--const. and _--4 , the proposed expression reduces to 3)

and 4),
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Recalling now i") we obtain

The function _4 ' if it there exists, must satisfy eq. 16). To the same

conclusion we lead if we consider C_>.
7&

As an application we can now restrict to the case

We have _) -- CO and
C= Co_d.

This is a linear ordinary seconc_ order equation.
I L

Its solution is of the form(_x_and preciselyiT --

If we consider dZ we obtain also

In the previous analysis _ is an arbitrary constant. If we let _ assume

all the values 0'---_---_ _ we obtain _as _ and _complete sets of

functions, which allow us to expande by integral whatever function. Each

dynamic fenomenum in, a structure where eq.s i") are valid and C= _o

can be analysed as, (see 17} and 17')),

_D
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Obviously 18) is not the only way by which to expand by integral such a

dynamic fenomenum, but this way allows us to consider component functions

when the propagation speed at any x is well know. Such speed, as we know,

is a fundamental datum in order to evaluate the speed of a reflected

wave, in particular in the case of time depending restraint conditions.
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